5 resultados para refinery effluent holding pond

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 6-month-long, bench-scale simulation of an industrial wastewater stabilization pond (WSP) system was conducted to evaluate responses to several potential performance-enhancing treatments. The industrial WSP system consists of an anaerobic primary (1ry) WSP treating high-strength wastewater, followed by facultative secondary (2ry) and aerobic tertiary (3ry) WSPs in series treating lower-strength wastewater. The 1ry WSP was simulated with four glass aquaria which were fed with wastewater from the actual WSP system. The treatments examined were phosphorus supplementation (PHOS), phosphorus supplementation with pH control (PHOS+ALK), and phosphorus supplementation with pH control and effluent recycle (PHOS+ALK+RCY). The supplementary phosphorus treatment alone did not yield any significant change versus the CONTROL 1ry model pond. The average carbon to phosphorus ratio of the feed wastewater received from the WSP system was already 100:0.019 (i.e., 2,100 mg/l: 0.4 mg/l). The pH-control treatments (PHOS+ALK and PHOS+ALK+RCY) produced significant results, with 9 to 12 percent more total organic carbon (TOC) removal, 43 percent more volatile organic acid (VOA) generation, 78 percent more 2-ethoxyethanol and 14 percent more bis(2-chloroethyl)ether removal, and from 100- to 10,000-fold increases in bacterial enzyme activity and heterotrophic bacterial numbers. Recycling a 10-percent portion of the effluent yielded less variability for certain physicochemical parameters in the PHOS+ALK+RCY 1ry model pond, but overall there was no statistically-detectable improvement in performance versus no recycle. The 2ry and 3ry WSPs were also simulated in the laboratory to monitor the effect and fate of increased phosphorus loadings, as might occur if supplemental phosphorus were added to the 1ry WSP. Noticeable increases in algal growth were observed at feed phosphorus concentrations of 0.5 mg/l; however, there were no significant changes in the monitored physicochemical parameters. The effluent phosphorus concentrations from both the 2ry and 3ry model ponds did increase notably when feed phosphorus concentrations were increased from 0.5 to 1.0 mg/l. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The apparent excess in the rate of lung cancer among the population of Texas coastal counties has prompted this study. The main objective was to assess the risk of lung cancer among employees of oil refining industries. Data collected by UTSPH and NCI were used for this research. A non significant overall low risk of lung cancer was observed among workers ever employed in oil refining (COR = 0.84). A lower but not significant risk of lung cancer was detected among the same workers when classified by their usual industry of employment (COR = 0.77). An overall non significant crosstime decline in the risk of lung cancer was observed among most of the occupational groups within the oil refining industry, with the exception of professional/technical and clerical/sales occupations where a non significant crosstime increase in the risk was observed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot foods served in foodservice establishments, institutions and homes, have always been regarded as safe, since cooking temperatures are more likely to kill the bacterial agents that may cause foodborne diseases. However, foods that are otherwise served hot have been epidemiologically incriminated for causing foodborne diseases. This situation arises due to the possible post-cooking food contamination. Post-cooking contamination of hot-held food is most threatening for it gives the contaminating agents the possibility of proliferation. On one hand, post-cooking contamination is least understood and on the other, hot-holding of food gives the consumer a false sense of freedom from foodborne diseases. In this study, the dynamics of food contamination before or after cooking and during hot-holding are discussed and a food contamination dynamics model is presented.^ The literature on foodborne cholera, cholera-like diarrhea, shigellosis and E. coli gastroenteritis together with the literature on the occurrence and growth of the causative enteropathogens; 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli were reviewed. The literature on the infective doses of these organisms were also cited.^ In the study, four cooked food types held hot at 40-60(DEGREES)C were deliberately contaminated with 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli, one at a time at each of the hot-holding temperatures. Tested food samples for the recovery of these enteropathogens were withdrawn at various time intervals of hot holding.^ The results showed bacterial recovery to decline with increasing temperature and with increasing hot-holding time within each holding temperature. All the bacterial types except V. cholerae were recovered even after holding the food at 60(DEGREES)C for one hour. V. cholerae was not recovered after hot-holding the food at 50-60(DEGREES)C at certain holding periods. After 48 hrs incubation, V. cholerae was recovered on TCBS agar plates that read negative after the initial 24 hrs of incubation. Effective hot-holding temperatures were determined for each of the food types contaminated by each of the bacterial types.^ Statistical analysis of the collected data showed temperature, bacterial type and their interaction to be significant in enteropathogen recovery. Food type and its interactions with temperature and bacterial type were found not significant. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this research were: to determine the contribution of algae to commonly run water quality variables, to evaluate waste pond micoorganisms' capacity to degrade and accumulate ten EPA priority pollutants, and to determine the environmental fate of those compounds in a laboratory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^